Lawvere Categories as Composed PROPs
نویسندگان
چکیده
PROPs and Lawvere categories are related notions adapted to the study of algebraic structures borne by an object in a category, but whereas PROPs are symmetric monoidal, Lawvere categories are cartesian. This paper formulates the connection between the two notions using Lack’s technique for composing PROPs via distributive laws. We show Lawvere categories can be seen as resulting from a distributive law of two PROPs — one expressing the algebraic structure in linear form and the other expressing the ability of copying and discarding variables.
منابع مشابه
Freyd categories are Enriched Lawvere Theories
Lawvere theories provide a categorical formulation of the algebraic theories from universal algebra. Freyd categories are categorical models of first-order effectful programming languages. The notion of sound limit doctrine has been used to classify accessible categories. We provide a definition of Lawvere theory that is enriched in a closed category that is locally presentable with respect to ...
متن کاملNominal Lawvere Theories
Lawvere theories provide a category theoretic view of equational logic, identifying equational theories with small categories equipped with finite products. This formulation allows equational theories to be investigated as first class mathematical entities. However, many formal systems, particularly in computer science, are described by equations modulated by side conditions asserting the “fres...
متن کاملOn Homotopy Invariance for Algebras over Colored Props
Over a monoidal model category, under some mild assumptions, we equip the categories of colored PROPs and their algebras with projective model category structures. A BoardmanVogt style homotopy invariance result about algebras over cofibrant colored PROPs is proved. As an example, we define homotopy topological conformal field theories and observe that such structures are homotopy invariant.
متن کاملFrom Operads and Props to Feynman Processes
Operads and PROPs are presented, together with examples and applications to quantum physics suggesting the structure of Feynman categories/PROPs and the corresponding algebras.
متن کاملGabriel-Ulmer duality and Lawvere theories enriched over a general base
Motivated by the search for a body of mathematical theory to support the semantics of computational effects, we first recall the relationship between Lawvere theories and monads on Set. We generalise that relationship from Set to an arbitrary locally presentable category such as Poset, ωCpo, or functor categories such as [Inj, Set] or [Inj, ωCpo]. That involves allowing the arities of Lawvere t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016